News & Publications


article thumbnail

Early springs and late-season freezes may become the new normal

Wed, Sep 21, 2016

The “false spring” of 2012 was the earliest in an over 100 year record, and resulted in large-scale agricultural losses. To find out if these types of springs will become more common in the future, researchers used new climate change simulation models, including the USA-NPN’s Spring Indices, to distinguish natural climate fluctuations from longer-term trends. They found that by mid-century, we could see springs like that of 2012 as often as one out of every three years. They also found last freeze dates may not change at the same rate, resulting in more large-scale tissue damage and agricultural losses.


article thumbnail

Nature’s Notebook observations help to manage invasive buffelgrass

Wed, Aug 03, 2016

Buffelgrass, an invasive perennial grass that responds well to fire and outcompetes natives, threatens to transform the current Sonoran desert landscape. Managers need to treat buffelgrass with herbicides when the plant is at least 50% green. The authors of a new study in the journal Remote Sensing found that buffelgrass responds quickly to rain, with plant green up occurring twice as fast in areas with buffelgrass than areas with mostly native vegetation. This information will help managers know when to get out to spray buffelgrass. Studies such as this, which integrate on-the-ground observations of phenology with satellite data, demonstrate the power of multiple data sources to inform management activities.


article thumbnail

Nature’s Notebook observations validate remotely-sensed data

Mon, Jul 18, 2016

While there is great potential in linking data collected by observers on the ground and data collected by remote satellites, few studies have successfully combined these two types of data. Researchers from the Appalachian Laboratory at the University of Maryland Center for Environmental Science compared observations of leaf phenology collected through the Nature’s Notebook PopClock campaign to continental-scale satellite imagery collected by the Moderate Resolution Imaging Spectrometer (MODIS). They implemented three quality control procedures that resulted in a high correlation between the two datasets (r2 = 0.67). Being able to more easily combine citizen science and remotely-sensed data will give scientists a large amount of information over a range of geographic scales, to better understand the response of forest plants to future changes in climate.


article thumbnail

Kodiak brown bears are synced with the salmon red wave

Mon, May 16, 2016

Authors of a study from the University of Montana, University of Wyoming, and US Fish and Wildlife Service investigated how well Kodiak brown bears track spawning salmon. Bears greatly depend on this salmon resource, which is threatened by habitat fragmentation and low diversity of spawning phenology that can be introduced by hatchery stocks.


article thumbnail

Finer resolution models provide local predictions of leaf-out in California oaks

Mon, Apr 11, 2016

Researchers from Princeton, Chapman University, and UCLA developed models of valley oak leaf-out under past and future climate scenarios to test how changing the spatial scale of these models affects leaf-out. The authors used data collected by the California Phenology Project, which began in 2010 and is part of the USA National Phenology Network, to validate their models of valley oak leaf-out before downscaling the models to create local predictions of leaf-out.


article thumbnail

Roots, as well as leaves, are affected by shifting temperatures

Sat, Apr 09, 2016

Plants rely on their roots for delivery of water and nutrients, not to mention for the structure that anchors them to the earth. Just as new leaves or needles grow in the springtime, roots also have a period of growth, or production. To better understand the relationship between leaf and root production, the authors of this study evaluated patterns in the timing of leaf and root phenology in deciduous and coniferous trees.


article thumbnail

Climate change means snowshoe hares stand out like lightbulbs against a snowless background

Wed, Mar 16, 2016

Researchers from North Carolina State University and the University of Montana found weekly survival decreases of up to 7% for hares that had coat color that was mismatched with their surroundings, making them stand out like lightbulbs on a dark background. The researchers used models to predict how the population of hares is likely to change given the survival rates they observed. Under future climate change scenarios, they project that hare populations could decrease by up to 23% by the end of the century.


article thumbnail

Herbarium records provide insight to flowering phenology in the Southeast U.S.

Thu, Feb 18, 2016

Flowering in sub-tropical regions is thought to be more sensitive to temperature than precipitation, though this has not been widely studied. The authors of this study looked at herbarium records of over 1700 native herbaceous flowering plant species from South Carolina from 1951 to 2009. They found plants with early spring, late spring, and summer flowering were all responsive to increasing February and March temperatures.


article thumbnail

Warblers shift breeding time to maximize food resources

Tue, Jan 19, 2016

Animals may be adversely affected if they are not able to match shifts in timing of their food or other resources. The authors of a new study found black-throated blue warblers have a varied diet and ability to shift the timing of their nesting, which allows them to be less susceptible to trophic mismatch after arrival at their breeding grounds.


article thumbnail

Future springs may arrive three weeks earlier across the US

Mon, Dec 07, 2015

The earlier springs seen in recent decades may become a permanent change. Researchers at UW - Madison predict that by the end of this century, spring will appear approximately three weeks earlier across the continental U.S. False springs are also likely to increase in the Great Plains and portions of the Midwest.